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We examine the relaxation of the Kob-Andersen Lennard-Jones binary mixture using Brownian dynamics
computer simulations. We find that in accordance with mode-coupling theory the self-diffusion coefficient and
the relaxation time show power-law dependence on temperature. However, different mode-coupling tempera-
tures and power laws can be obtained from the simulation data depending on the range of temperatures chosen
for the power-law fits. The temperature that is commonly reported as this system’s mode-coupling transition
temperature, in addition to being obtained from a power law fit, is a crossover temperature at which there is a
change in the dynamics from the high-temperature homogeneous, diffusive relaxation to a heterogeneous,
hopping-like motion. The hopping-like motion is evident in the probability distributions of the logarithm of
single-particle displacements: approaching the commonly reported mode-coupling temperature these distribu-
tions start exhibiting two peaks. Notably, the temperature at which the hopping-like motion appears for the
smaller particles is slightly higher than that at which the hopping-like motion appears for the larger ones. We
define and calculate a new non-Gaussian parameter whose maximum occurs approximately at the time at which
the two peaks in the probability distribution of the logarithm of displacements are most evident.
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I. INTRODUCTION

Computer simulations have added a great deal to our
knowledge of relaxation in supercooled liquids. A seminal
series of studies was performed by Kob and Andersen �1�
who were interested in comparing the results of molecular
dynamics simulations to the predictions of the mode-
coupling theory �2�. They observed that as the temperature
was lowered the mode-coupling theory gave a good qualita-
tive description of the relaxation of the liquid. Specifically,
they found that the long-time self-diffusion coefficient and a
characteristic relaxation time showed power law behavior as
Tc=0.435 was approached. Since their investigation, this
temperature has been referred to as the mode-coupling tran-
sition temperature for the Kob-Andersen Lennard-Jones mix-
ture. Later work �3,4� demonstrated that there is no true van-
ishing of the self-diffusion coefficient or true divergence of
the � relaxation time at Tc. This is similar to what is ob-
served experimentally for most glass formers �5�. There ex-
ists power-law-like behavior of the relaxation time as a tem-
perature Tc is approached and close to Tc there is a crossover
to a different relaxation scenario which extends to the labo-
ratory glass transition Tg, defined as the temperature at which
the viscosity equals 1013 poise �5–7�.

Many simulations performed since the Kob and Andersen
study have resulted in the following relaxation scenario in
supercooled liquids around the crossover temperature Tc �see
Ref. �10� and references therein�. The motion of particles in
a slightly supercooled liquid is homogeneous and the self
part of the van Hove correlation function �8� is approxi-
mately Gaussian at all times. At lower temperatures the self
part of the van Hove correlation function deviates signifi-
cantly from Gaussian, the motion of the particles is strongly
heterogeneous, and, on an intermediate time scale �up to so-
called exchange time�, the particles can be separated by their

individual relaxation times. It is generally believed that at
short times the particles are confined to cages of neighboring
particles and a “cooperative motion” �11� of particles has to
occur to facilitate cage escape �12,13�. The time scale of this
cooperative motion increases with decreasing temperature. In
the original studies �11,12� it was assumed that this time
scale is around the peak in the non-Gaussian parameter
�2�t�= 3

5 ��r4� / ��r2�2−1, where �r is the distance over which
a particle moved in time t. It has been accepted that the peak
position of �2�t� “roughly locates the time of maximum dy-
namic heterogeneity” �14�. While this is a natural first
choice, there is no a priori reason to choose this time. It has
been shown that the van Hove correlation function deviates
strongly from a Gaussian distribution over a much longer
time scale �15�. Moreover, it is also possible to identify par-
ticles which remain slower than other particles for time much
longer than the time scale given by the peak position of �2�t�
�16�. We should point out that, although the time scale of the
peak position of �2�t� is often singled out in connection with
dynamic heterogeneity, it has also been recognized that there
exists dynamic heterogeneity on a much longer time scale,
and a four-point correlation function that is sensitive to this
longer-time heterogeneity has been defined and investigated
�see Ref. �17� and references therein�.

In this work we examine the relaxation of a supercooled
liquid using Brownian dynamics computer simulations. Ex-
periments conducted on Brownian systems �i.e., on colloidal
suspensions� have so far failed to show any significant de-
parture from the power law behavior of the self-diffusion
coefficient and the characteristic relaxation time �18�. Thus,
it was suggested that the predictions of the original �also
known as “idealized”� mode-coupling theory provide a good
description of the relaxation of the fluid. However, it has
since been demonstrated using computer simulations that the
relaxation of a supercooled fluid is the same for Newtonian
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dynamics �1�, stochastic dynamics �4�, and Brownian dy-
namics �15�. In particular, in computer simulations depar-
tures from mode-coupling-like power laws and the emer-
gence of hopping-like motion have been observed for all
three microscopic dynamics. The qualitative difference be-
tween experimental results �which do not find deviations
from mode-coupling-like power laws� and theoretical ones
�which do� remains unexplained.

The focus of this work is the crossover from the high-
temperature homogeneous relaxation of the slightly super-
cooled fluid to the low temperature relaxation around Tc. We
show that, while the mode-coupling transition temperature
cannot be unambiguously determined from the computer
simulation results, the commonly reported temperature is the
crossover temperature for two different modes of relaxation.
Furthermore, we define and calculate a time-dependent func-
tion that vanishes identically for a Gaussian diffusion pro-
cess. This new function ��t�= 1

3 ��r2��1/�r2�−1, hereafter
called a new non-Gaussian parameter, has a peak at a time at
which the relaxation seems the most heterogeneous. This
time is always longer than a characteristic decay time of the
incoherent intermediate scattering function �9� that is known
as the � relaxation time. Moreover, the peak position of the
new non-Gaussian parameter has temperature dependence
very similar to that of the � relaxation time.

The paper is organized as follows. In Sec. II we briefly
describe the simulation. In Sec. III we present results for the
mean square displacement, the self-diffusion coefficient, the
incoherent intermediate scattering functions, and the � relax-
ation time �a preliminary report of some of these results ap-
peared in Ref. �15��. We show that two different power-law
fits can be obtained depending on the range of temperatures
used. In Sec. IV we present results for the probability distri-
butions of the logarithm of single-particle displacements.
These distributions are sensitive to hopping-like dynamics.
In Sec. V we define and present the new non-Gaussian pa-
rameter. In Sec. VI we discuss the conclusions that can be
drawn from this work.

II. SIMULATION DETAILS

We simulated a binary mixture of 800 particles of type A
and 200 particles of type B that was first considered by Kob
and Andersen �1�. Briefly, the interaction potential is
V���r�=4�������� /r�12− ���� /r�6�, where � ,�� �A ,B� ,�AA

=1.0,�AA=1.0,�AB=1.5,�AB=0.8,�BB=0.5, and �BB=0.88.
The interaction parameters are chosen to prevent crystalliza-
tion �1�. The simulations are performed with the interaction
potential cut at 2.5���, and the box length of the cubic simu-
lation cell is 9.4�AA. Periodic boundary conditions were
used.

We performed Brownian dynamics simulations. The equa-
tion of motion for the position of the ith particle of type � ,r�i

�,
is

r�̇i
� =

1

�0
F� i

� + �� i�t� , �1�

where the friction coefficient of an isolated particle �0=1.0

and F� i
� is the force acting on the ith particle of type �,

F� i
� = − �i

�	
j�i

	
�=1

2

V���
r�i
� − r� j

�
� �2�

with �i
� being the gradient operator with respect to r�i

�. In Eq.
�1� the dot denotes a time derivative, and the random noise
�� i satisfies the fluctuation-dissipation theorem,

��� i�t��� j�t��� = 2D0��t − t���ij1 . �3�

In Eq. �3�, the diffusion coefficient D0=kBT /�0, where kB is
Boltzmann’s constant and 1 is the unit tensor. Since the equa-
tion of motion allows for diffusive motion of the center of
mass, all the results will be presented relative to the center of
mass �i.e., momentary positions of all the particles are al-
ways relative to the momentary position of the center of
mass�. We will present the results in terms of the reduced
units with �AA ,�AA ,�AA /kB, and �AA

2 �0 /�AA being the units of
length, energy, temperature, and time, respectively. The mass
of both particles is the same and equal to 1.0.

The equations of motion, Eq. �1�, were solved using a
Heun algorithm with a small time step of 5	10−5. We simu-
lated the temperatures T=0.44, 0.45, 0.47, 0.5, 0.55, 0.6, 0.8,
0.9, 1.0, 2.0, 3.0, and 5.0. We ran a long equilibration run �at
least half as long as the production run� and four production
runs at each temperature, except at T=0.44 where we ran six
production runs. The results are an average over the produc-
tion runs, which were as long as 6	108 steps long for the
lowest temperature studied.

III. MODE-COUPLING-LIKE POWER LAWS

The mode-coupling theory predicts a power law vanishing
of the self-diffusion coefficient and a power law divergence
of the characteristic relaxation time at the mode-coupling
transition temperature Tc. In many simulations and experi-
ments there is a range of temperatures where power laws fit
the diffusion coefficient and the relaxation time well, and the
transition temperature is obtained from fits of these proper-
ties to functions of the form a�T−Tc��. The Tc obtained in
this manner is generally referred to as the mode-coupling
temperature. In this section, we will present results for the
mean square displacement, the diffusion coefficient, the self-
intermediate scattering functions, and the � relaxation time.
Moreover, we will show that for the system studied in this
work reasonable power law fits can be obtained for the dif-
fusion coefficient and the � relaxation time for a transition
temperature different from the usually accepted mode-
coupling transition temperature of Tc=0.435 if a different
range of temperatures is used for the power law fits.

Shown in Fig. 1 is the single-particle mean square dis-
placement ��r2�t��= �
r�A�t�−r�A�0�
2� for the A particles. The
graph for the B particles looks similar. The short time motion
is diffusive with a temperature-dependent diffusion coeffi-
cient D0=kBT /�0 where kB is Boltzmann’s constant and �0 is
the friction coefficient �recall that in our units kB=1 and �0
=1�. For low temperatures a plateau develops in the log-log
plot at intermediate times where the mean square displace-
ment does not change appreciably. For the lowest tempera-
ture the plateau region spans several decades in time.
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The plateau region is generally associated with the “cage”
effect. It represents a localization of the particles on interme-
diate time scales and has been observed in many simulations
of glassy systems �1,3�. Note that there is no true plateau in
the mean square displacement versus time and the slope of
the mean square displacement versus time decreases mono-
tonically. Therefore there is no inflection point of the mean
square displacement as a function of time. However, there is
an inflection point in the logarithm of the mean square dis-
placement versus the logarithm of time. We use this inflec-
tion point to find the cage diameter. For T=0.44 the inflec-
tion point occurs at a value of the mean square displacement
of 0.0288�AA for the A particles and 0.0461�AA for the B
particles. These values of the cage diameter correspond to a
distance around 0.17�AA for the A particles and around 0.21
�AA for the B particles, which is much smaller than the di-
ameter of any particle. After the plateau, the motion is again
diffusive with a diffusion coefficient D
D0.

We determined the long-time self-diffusion coefficient D
from the slope of ��r2�t�� at long times. The results for the A
and B particles are shown in Fig. 2. We observe power-law
behavior similar to what was reported in previous simula-
tions of this system using Newtonian �1� and stochastic dy-
namics �3,4�. Namely, there is power law behavior of the
diffusion coefficient for temperatures between T=0.8 and T
=0.50. Then there are deviations from the power law at and

below T=0.47. We fit the diffusion coefficients for 0.5�T
�0.8 for the A and B particles to a power law of the form
a�T−0.435��. The exponents in the fit are given in the figure,
and agree reasonably well with the exponents found using
Newtonian �1� and stochastic dynamics �3,4,19�.

We also performed three parameter fits to the diffusion
coefficient and the � relaxation time for different tempera-
ture ranges. We found that we can obtain good fits to D and
�� for temperatures 0.44�T�0.6. The transition tempera-
ture depends slightly on the quantity being fitted and ranges
from Tc=0.391 to Tc=0.409. We found the average transition
temperature obtained from the fits Tc

�2�=0.401±0.009, and
then fit each quantity to the function a�2��T−0.401���2�

. We
show this final fit for the self-diffusion coefficient in Fig. 3.
Qualitatively, it is clear that the new fit is as good as the
standard fit shown in Fig. 2. Quantitatively, we evaluate the
quality of fit by examining 
2=	i

N��D�Ti�−y�Ti�� /�i�2 where
N is the number of data points used in the fit, y�T�=a�T
−Tc��, and �i is the standard deviation of the diffusion coef-
ficient at Ti. For each fit we find the probability p that the
value of 
2 should exceed the calculated value by chance
given that the model is correct �20�. Higher values of p cor-
respond to a better fit, and the maximum value of p is one.
For the transition temperature Tc

�2�=0.401 and the tempera-
ture range 0.44�T�0.6, p=0.860 for the A particles and
p=0.902 for the B particles. This is significantly better than
the values p=0.044 and p=0.0169 for the A and B particles,
respectively, when the diffusion coefficient was fit over the
temperature range 0.5�T�0.8 and with Tc=0.435.

We calculated the self-intermediate scattering function
Fs

��q , t�= 1
N�

�	 j=1
N� exp�iq� · �r� j

��t�−r� j
��0���� ,�� �A ,B�, shown

in Fig. 4, for a wave vector q= 
q� 
 around the first peak of the
partial structure factors for the A�q=7.25� and the B�q
=5.75� particles. The self-intermediate scattering function
decays from its t=0 value of one to zero. For the same tem-
peratures in which there is a plateau in the log-log plot of the
mean square displacement, there is also a plateau in the log-
log plot of the incoherent intermediate scattering functions.
The characteristic time for the decay of the self-intermediate
scattering function is the � relaxation time ��, which we
define as the time when this scattering function is equal to

FIG. 1. The mean square displacement for the A particles for
T=5.0, 3.0, 2.0, 1.5, 1.0, 0.9, 0.8, 0.6, 0.55, 0.50, 0.47, 0.45, and
0.44 listed from left to right. The graph of the mean square dis-
placement for the B particles is similar.

FIG. 2. Long time diffusion coefficient for the A �closed sym-
bols� and the B �open symbols� particles. The lines are the power
law fits to the function a�T−Tc�� with Tc=0.435 fixed.

FIG. 3. Diffusion coefficient for the A �closed symbols� and B
�open symbols� particles. The solid lines are the “alternative”
power-law fits to the function a�2��T−Tc

�2����2�
where Tc

�2�=0.401.
Dashed lines are fits to the function a�T−Tc�� where Tc=0.435.

RELAXATION IN A GLASSY BINARY MIXTURE:… PHYSICAL REVIEW E 72, 011205 �2005�

011205-3



1/e of its initial value. It has been observed that other defi-
nitions of the � relaxation time results in the same tempera-
ture dependence.

The � relaxation time is shown in Fig. 5. Again there is
power-law behavior of the � relaxation time between 0.5
�T�0.8, then there are deviations from the power law for
temperatures at and below T=0.47. The lines in the figure are
power law fits to the function a�T−0.435�−� for the tempera-
ture range 0.5�T�0.8, which is the same function and the
same temperature range as for Fig. 2. The exponents are
given in Fig. 5 and are close to what was found in simula-
tions of the same system using Newtonian �1� and stochastic
dynamics �3,4� instead of Brownian dynamics.

As explained above, we also fit the � relaxation time to
the function a�2��T−0.401�−��2�

. The result is shown in Fig. 6.
Again, qualitatively, the new fit is as good as the standard fit
shown in Fig. 5. Quantitatively, we evaluated the quality of
fits using the same procedure as for the diffusion coefficient.
When Tc was set to 0.401 and we fit the � relaxation time for
0.44�T�0.6, p=0.598 for the A particles and p=0.743 for
the B particles. When the transition temperature was set to
Tc=0.435 and we used the temperature range 0.5�T
�0.8, p=0.15 for the A particles and p=0.35 for the B par-
ticles. Thus the fits were better for Tc

�2�=0.401.
The values of the scaling exponents obtained from new

fits for both the self-diffusion coefficient and the � relaxation

time are quite a bit greater than those obtained from the
conventional fit. Also, the difference between the exponents
for the A and B particles is considerably larger.

We should point out that one could try using a slightly
different procedure to identify the mode-coupling transition
temperature. Namely, one could try fit a straight line to a plot
of, e.g., D1/� vs. temperature, where � is a scaling exponent
obtained from solving mode-coupling equations. There are
two potential problems with this approach: first, it requires
solving full time and wave-vector-dependent mode-coupling
equations �21�. Second, using this alternative approach one
has to neglect the qualitative differences between the predic-
tions of the theory and results of the simulations like, e.g.,
the difference between scaling exponents for the A and the B
particles and the difference between scaling exponents for
the diffusion coefficients and the relaxation times.

In conclusion, we find that the mode-coupling tempera-
ture of the Kob-Andersen binary mixture is not unique: if a
temperature range different from the original one �1� is used
for fitting the simulation data to the power laws, a different
mode-coupling transition temperature results. In the next
section we show that there is a change in the dynamics
around the commonly reported mode-coupling temperature,
Tc=0.435.

IV. PROBABILITY DISTRIBUTIONS
OF SINGLE-PARTICLE DISPLACEMENTS

Following a procedure suggested previously �14,22,23�,
we examined the probability distributions of the logarithm of
single-particle displacements P(log10��r� ; t) at a time t. Mul-
tiple peaks in P(log10��r� ; t) at a time t� have been clearly
observed in simulations of model colloidal gels �14�, and
provide evidence of populations of fast and slow particles at
t�. Note that P(log10��r� ; t) is defined such that the integral
�x0

x1P�x ; t�dx is the fraction of particles whose value of
log10��r� is between x0 and x1. Furthermore, the probability
distribution P(log10��r� ; t) can be obtained from the self van
Hove correlation function �9� since P(log10��r� ; t)
=ln�10�4��r3Gs��r , t�. There are some general properties of
P(log10��r� ; t) if the van Hove correlation function is Gauss-

FIG. 4. Self-intermediate scattering functions for the A particles
for T=5.0, 3.0, 2.0, 1.5, 1.0, 0.90, 0.80, 0.60, 0.55, 0.50, 0.47, 0.45,
and 0.44 listed from left to right. The corresponding graph for the B
particles is similar.

FIG. 5. The � relaxation time for the A �closed symbols� and B
�open symbols� particles. The lines are fits to the function a�T
−Tc�−� with Tc=0.435 fixed.

FIG. 6. The � relaxation time for the A �closed symbols� and B
�open symbols� particles. The solid lines are the “alternative”
power-law fits to the function a�2��T−Tc

�2��−��2�
where Tc

�2�=0.401.
Dashed lines are fits to the functions a�T−Tc�−� where Tc=0.435.
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ian. If the motion of a tagged particle is diffusive at all times
with a diffusion coefficient D, then the self van Hove corre-
lation function Gs��r , t�= �1/ �4�Dt�3/2�exp�−�r2 /4Dt�. For a
Gaussian van Hove function, the shape of P(log10��r� ; t) is
independent of time �24�, and the peak height of
P(log10��r� ; t)=loge�10��54/� e3/2
2.13. Deviations from
this height represents deviations from Gaussian behavior of
Gs�r , t�.

Shown in Fig. 7 is P(log10��r� ; t) for the A particles at
T=5.0, 0.6, 0.47, and 0.44. For each temperature several
different times are shown. The thicker lines correspond to
later times. At T=5.0 there is little deviation from Gaussian
behavior: there is only one peak whose height is close to
2.13 at all times. The peak position moves to larger distances
for larger times. For T=0.6, there are deviations from Gauss-
ian behavior manifested in the reduced height of the peak of
the distribution, but there is still only one peak for all times.
At T=0.47, the deviations from Gaussian behavior are stron-
ger and the distribution becomes very broad at a time which
corresponds to right after the plateau of the mean square
displacement. At T=0.44 there are two distinct peaks. The
position of the second peak depends on time, but when the
height of both peaks are approximately equal the position of
the second peak is around log10��r�=0, thus �r=1.0=�AA.

The probability distributions P(log10��r� ; t) provide clear
evidence that there are populations of particles with different
mobilities. These probability distributions are similar to the
distributions observed in model colloidal gels close to a ge-
lation transition �22� and in dense systems with purely repul-
sive interactions �14�. The shape of the distributions strongly
suggests a heterogeneous hopping-like motion for at least a
fraction of the particles. We find that the hopping rate of the
particles varies greatly between particles, and the typical size
of the hopping length for the A �larger� particles is equal to
one particle diameter.

The two peaks in P(log10��r� ; t) are clearly defined at a
higher temperature for the B particles, Fig. 8, than for the A
particles. For T=5.0, P(log10��r� ; t) for the B particles is
similar to what is observed for the A particles. The distribu-
tion P(log10��r� ; t) broadens and the peak height decreases
significantly for the B particles starting at T=0.6, and we
observe the two peak structures starting at T=0.5. The two
peaks are well defined for T=0.47 and are very prominent
for T=0.44. At these low temperatures there is a clear dis-
tinction between mobile and immobile particles. The second
peak occurs around log10��r�
0.086 for the B particles,
which corresponds to a value of �r
1.25. This suggests that
the typical lengths of the particle jumps are slightly larger for
the B particles than for the A particles. Note that there are
small secondary peaks in P(log10��r� ; t) for the B particles
for the longer times. This is expected if the activated hopping
is the dominant relaxation process.

The size dependences of the distributions of the displace-
ments of the particles have been observed in simulations of
colloidal gels by Puertas et al. �22�. They simulated a system
of soft core polydisperse particles with an average particle
radius a. They noticed that the distributions of squared dis-
placements were more bimodal for particles with a smaller
radius �see Fig. 6 in Ref. �22��. It is likely that the size

FIG. 7. The probability of the logarithm of single particle dis-
placements P(log10��r� ; t) for the A particles. The wider lines indi-
cate increased time t. �a� T=5.0 �a� for t=0.01, 0.05, 0.1, 5, and 10
listed from left to right. �b� T=0.60 for t=1.0, 5, 15, 25, and 30
listed from left to right. �c� T=0.47 for t=100, 200, 300, 400, 500,
and 800 listed from left to right. �d� T=0.44 for t=1000, 2000,
3000, 4000, 5000, 6000, and 10 000 listed from left to right.
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dependence of dynamic heterogeneity is a general feature of
systems with slow dynamics.

In earlier studies �14,22� probability distributions of par-
ticle displacements were examined at a time t* such that
��r2�t*��=10a2, where a is a measure of the average size of
the polydisperse particles. While bimodal distributions were
observed for this t*, there was no clear justification for se-
lecting this particular time scale. In the next section we in-
troduce a new non-Gaussian parameter whose peak position
allows us to identify the time in which the two peaks in
P(log10��r� ; t) are around the same height. Moreover, we
will demonstrate that the peak position of the commonly
used non-Gaussian parameter �2�t� does a poor job of iden-
tifying this time.

V. NEW NON-GAUSSIAN PARAMETER

Many simulations which examine heterogeneous dynam-
ics focus on a time scale which is found from the peak of the
non-Gaussian parameter �2�t�= 3

5 ��r4�t�� / ��r2�t��2−1. It has
been observed that close to Tc=0.435,�2�t� has a peak oc-
curring at the so-called late � regime, i.e., some time before
the � relaxation time. Moreover, for T
0.8 with decreasing
temperature the value of the non-Gaussian parameter at the �
relaxation time, �2����, is a decreasing fraction of its maxi-
mum value �15�. In particular, at T=0.44 the non-Gaussian
parameter at the � relaxation time is approximately equal to
0.62 and 0.35 of its maximum value for the A and B par-
ticles, respectively. We observe that the two peaks in
P(log10��r� ; t) �for temperatures in which the two peaks are
clearly defined� are about the same height at some time after
the � relaxation time. Thus �2�t� is small compared to its
maximum value at a time when the two peaks are very
prominent.

We propose to use a new function that, as does �2�t�,
quantifies deviations from a Gaussian distribution of dis-
placements,

��t� =
1

3
��r2�� 1

�r2� − 1, �4�

where �r is the distance over which the particle moved in
time t. We will show that this new non-Gaussian parameter
identifies the time in which the two peaks in the probability
distribution of the logarithm of single-particle displacements
are most evident. The parameter �2�t� is significantly influ-
enced mostly by particles which move farther than expected
from a Gaussian distribution of particle displacements. In
contrast, the parameter ��t� weights very strongly the par-
ticles which have not moved as far as expected from a
Gaussian distribution of particle displacements through the
term �1/�r2� and weights the particles which move farther
than expected from a Gaussian distribution through the ��r2�
term. The factor of 1 /3 ensures that ��t� is zero when the self
part of the van Hove correlation function is Gaussian.

Shown in Fig. 9 is ��t� for the A and B particles. At short
times, the motion of the particles are Gaussian and ��t� is
close to zero. At intermediate times there is a peak in ��t�

FIG. 8. The probability of the logarithm of single particle dis-
placements P(log10��r� ; t) for the B particles. Wider lines indicate
increased time t. �a� T=0.5. 0 for t=0.01, 0.05, 0.1, and 0.5 listed
from left to right. �b� T=0.60 for t=1, 5, 10, 15, 20, and 25 listed
from left to right. �c� T=0.47 for t=100, 200, 300, 400, and 500
listed from left to right. �d� T=0.44 for t=600, 700, 800, 1000,
3000, 4000, and 5000 listed from left to right.
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whose height and position increases with decreasing tem-
perature. The peak in ��t� is larger for the B particles, which
is what we expect from examining the self part of the van
Hove correlation function and P(log10��r� ; t). At long times
��t� decays to zero.

It is interesting to note the temperature dependence of the
the average mean square displacement at the peak position of
��t�: for T�0.8 the average mean square displacement is
independent of temperature and it is around 0.23�AA

2 for the
A particles and 0.31�AA

2 for the B particles. For T
0.8, the
average mean squared displacement at the peak position of
��t� increases with decreasing temperature and at T=0.44 it
reaches the values of approximately 0.84�AA

2 for the A par-
ticles and 2.40�AA

2 for the B particles. It should be pointed
out that the temperature at which the average mean squared
displacement at the peak position of ��t� starts increasing is
close to the so-called onset temperature identified for the
Kob-Andersen model by Brumer and Reichman �25�.

The insert to each graph in Fig. 9 is the peak position of
the new non-Gaussian parameter, ��t�, denoted by �nng com-
pared to the � relaxation time and the peak position of the
commonly used non-Gaussian parameter, �2�t�, denoted by
�ng. Notice that the peak position of ��t� is always greater
than the � relaxation time, but it has the same temperature
dependence. This is in contrast to �ng, which is greater than
the � relaxation time and equal to �nng at higher tempera-
tures, but increases slower with decreasing temperature than
�� and �nng. For the lowest temperatures, �ng is much smaller
than either �� and �nng.

The peak position approximately corresponds to the time
in which the two peaks of P(log10��r� ; t) are of equal height.
Shown in Figs. 10 and 11 is the P(log10��r� ; t) for the A and
B particles at the peak position of �2�t� �dashed lines� and
��t� �solid lines� for temperatures of T=0.47 and T=0.44.
Notice that at the time corresponding to the peak position of
�2�t�, there is at most a shoulder in P(log10��r� ; t). For the
time which corresponds to the position of the peak in ��t�,
the two peaks in P(log10��r� ; t) are of similar height and the
definition of mobile and immobile particles is clear. For
comparison, the self part of the van Hove correlation func-
tion at the peak position of �2�t� �dashed lines� and ��t�
�solid lines� are shown as insets in Figs. 10 and 11.

VI. CONCLUSIONS

The mode-coupling theory has been used extensively to
describe the relaxation in supercooled liquids and the glass
transition. It correctly describes many qualitative features of
the glass transitions observed experimentally and in com-
puter simulations. The most notable success of the mode-
coupling theory is that it correctly describes the two-step
decay of the intermediate scattering functions and the quali-
tative features of the mean square displacement as a function
of time.

The idealized mode-coupling theory predicts power law
divergence of the � relaxation time and power law vanishing

FIG. 9. The new non-Gaussian parameter ��t� for T=5.0, 3.0,
2.0, 1.5, 1.0, 0.9, 0.8, 0.6, 0.55, 0.50, 0.47, 0.45, and 0.44 for the A
�a� and B �b� particles. The insets are the position of the peak of ��t�
�open circles� compared to � relaxation time �closed circles� and the
peak position of �2�t� �squares� versus temperature.

FIG. 10. The probability of the logarithm of the displacements
at the peak position of the old non-Gaussian parameter �2�t�
�dashed line� and the new non-Gaussian parameter ��t� �solid line�
at T=0.47 for the A particles �a� and the B particles �b�. The insets
are the self part of the van Hove correlation functions at the peak
position of �2�t� �dashed line� and ��t� �solid line�.
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of the self-diffusion coefficient at a transition temperature Tc.
It has been observed that there is power-law-like behavior of
the � relaxation time and the diffusion coefficient in simula-
tions and experiments close to a temperature Tc. However,
the structural arrest predicted by the mode-coupling theory
does not occur at Tc, but rather there appears to be a cross-
over to a different relaxation scenario and the mode-coupling
transition is said to be “avoided.”

We performed Brownian dynamics simulations of a fre-
quently studied glass-forming binary mixture for a large
range of temperatures. The temperature dependence of the �
relaxation time and the diffusion coefficient were similar to
what was observed in previous simulations of the same sys-
tem �1,3,4�. We found that the diffusion coefficient and the �
relaxation time can also be fit to a power law where the
transition temperature is Tc

�2�=0.401 which is lower than the
generally accepted mode-coupling transition temperature Tc
=0.435. However, by examining the probability distributions
of the logarithm of single-particle displacements,
P(log10��r� ; t), we demonstrated that the crossover from the
high-temperature diffusive relaxation of the particles to low

temperature hopping-like motion occurs near the generally
accepted mode-coupling transition temperature Tc=0.435.

The change in the relaxation processes are evident when
one examines the distribution of the logarithm of single-
particle displacements P(log10��r� ; t). At higher temperatures
there is one peak in P(log10��r� ; t) whose position increases
for increased time. For lower temperatures, the distribution
becomes broad at a time scale right after the plateau region
of the mean square displacement. At the lowest temperatures
examined in this study, there are two distinct peaks in
P(log10��r� ; t) for both the A and B particles. The two peaks
are evidence that on an intermediate time scale the particles
can be separated by their individual relaxation time, and thus
are dynamically heterogeneous. Moreover, the minimum be-
tween the peaks is smaller for the B particles than for the A
particles at a fixed temperature. The dependence on particle
size of the probability distributions is similar to what was
observed in earlier simulations �14,23�.

One possible interpretation of our results could be that the
mode-coupling temperature does not have any physical sig-
nificance and the crossover in supercooled liquid’s dynamics
is very smooth �26�. While such an interpretation cannot be
excluded, we would like to advocate a more cautious conclu-
sion: in order to identify a crossover temperature �or a nar-
row crossover temperature range� that one could interpret as
mode-coupling temperature, one has to investigate not only
power-law fits to transport coefficients and/or relaxation
times but also whether microscopic dynamics is homoge-
neous and diffusive-like or heterogeneous and hopping-like.
We would like to emphasize that although the mode-coupling
theory, in its standard form, cannot describe hopping-like
dynamics, it does provide a reasonable �21� description of
dynamics in moderately supercooled fluids.

We found that the typical non-Gaussian parameter �2�t�
does a poor job of identifying the time scale on which the
heterogeneous, hopping-like motion is most evident. We de-
fined a new non-Gaussian parameter ��t�= 1

3 ��r2��1/�r2�−1.
For temperatures in which there are two peaks in
P(log10��r� ; t) ,��t� has a peak occurring at a time �nng in
which the two peaks have approximately the same height.
For times in which only one peak is present, the peak posi-
tion of ��t� identifies the time in which P(log10��r� ; t) is
widest. The positions of the peak for �2�t� and ��t� are the
same for high temperatures, but the peak position of �2�t�
increases slower with decreasing temperature than the peak
position of ��t�. Moreover, the peak position of ��t� has the
same temperature dependence as the � relaxation time.
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FIG. 11. The probability of the logarithm of the displacements
at the peak position of the old non-Gaussian parameter �2�t�
�dashed line� and the new non-Gaussian parameter ��t� �solid line�
for T=0.44 for the A particles �a� and the B particles �b�. The insets
are the self part of the van Hove correlation functions at the peak
position of �2�t� �dashed line� and ��t� �solid line�.
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